Как искусственный интеллект помогает компаниям: 6 примеров

Нейронные сети (НС) сегодня являются одним из ярких примеров передовых технологий, а согласно последней статистике использование НС в бизнесе выросло на 270% всего за последние несколько лет.

Как работают нейронные сети

Искусственную нейронную сеть можно смело назвать попыткой воспроизвести сеть нейронов мозга, чтобы компьютер мог учиться и делать суждения как человек. Проще говоря, НС – это вычислительные модели или то, что мы называем алгоритмами.

Нейронные сети создаются путем программирования обычных компьютеров так, как если бы они были связаны с нервными клетками людей. Построенные из многочисленных, взаимосвязанных и многоуровневых простых обрабатывающих элементов, они имитируют определенные аспекты физической структуры мозга и обработки информации. Система ИИ обучается с получением каждого нового опыта, информации. Как и человек, алгоритм будет изменять свои внутренние соединения, пока не поймет, как получить желаемый результат с определенной степенью точности.

Как это помогает бизнесу

Способность нейронных сетей имитировать человеческое поведение и работать с широким спектром задач делает их идеальным инструментом для современных систем, основанных на больших данных. Поскольку организации, люди и устройства генерируют огромные объемы информации, то при помощи НС из нее можно извлечь самое важное.

Возможности нейронных сетей включают в себя:

  • Адаптивное обучение. Нейронные сети, как и люди, представляют собой нелинейные и сложные взаимодействия элементов, а также опираются на полученные ранее знания. ПО, например, использует адаптивное обучение для развития у детей навыков счета и чтения.
  • Самоорганизация. Способность группировать и классифицировать огромные объемы данных делает нейросети идеальным инструментом для решения сложных для визуального восприятия задач. Например, в сфере медицины, когда изображения зачастую трудно расшифровать людям, а вот НС может научиться автоматически группировать различные части тела за считанные секунды.
  • Распознавание образов. Нейронные сети превосходно справляются с задачей идентификации лиц, обучаясь распознавать закономерности в мимике людей. Этот талант делает их подходящими для таких приложений систем безопасности, которые должны моментально анализировать живое видео.
  • Работа в режиме реального времени. НС могут давать ответы в режиме реального времени, основанные на проанализированной информации. Это используется, например, в управлении беспилотными автомобилями и навигации дронов.
  • Анализ больших данных. Нейронные сети способны оказать ценную помощь и при анализе больших наборов данных. Алгоритмы помогают выявить соответствующие закономерности и взаимосвязи между переменными, которые могут быть неочевидны при использовании других инструментов анализа данных.
  • Прогнозирование. Способность НС прогнозировать результаты на основе алгоритмов позволяет применять широкий спектр бизнес-моделей, включая прогнозы погоды и дорожного движения.

Примеры использования нейронных сетей в бизнесе

Нейронные сети имеют широкий спектр возможностей для создания бизнес-приложений и помогают предприятиям автоматизировать задачи, которые раньше выполнялись вручную. Рассмотрим несколько примеров.

1. Маркетинг и электронная коммерция

Технология использования больших данных для обучения нейронных сетей очень полезна для выполнения маркетинговых задач. Специалисты могут применять инструменты НС для более эффективного поиска и взаимодействия с клиентами, что дает им возможность делать прогнозы поведения потребителей, анализировать более сложные сегменты покупателей, автоматизировать маркетинговые процессы. 

Но чаще всего они используются в области прогнозной аналитики. Нейросети могут помочь маркетологам прогнозировать результаты кампании, например, через сервис Яндекс.Метрика. С его помощью можно проводить оценку посещаемости веб-сайтов, анализ поведения пользователей и многое другое. А еще нейросети отлично справляются и с контентом, например, текстовым. Так, сервис перефразирования текста Retext.ai позволяет не только автоматически повышать уникальности текста, но мгновенно создавать краткое изложение к статьям на четырех языках: русском, английском, белорусском и украинском.

2. Розничная торговля и продажи

Для розничной торговли и продаж алгоритмы нейросетей позволяют прогнозировать спрос, определяя, когда именно продукт или услуга потребуются потребителям, как обеспечить постоянную доступность продукта и своевременную доставку.

Примером может послужить новая разработка «Сбера» – сервис «Прогнозирование спроса на производстве и в ритейле». ИИ автоматически определяет оптимальный объем товаров для каждой точки продаж или ожидаемый спрос от дистрибьюторов, в результате чего снижаются издержки бизнеса, связанные с избытком товаров, или их дефицитом на складе/в точке продаж.

3. Финансы и банковское дело

Нейронные сети применяются для автоматизации процессов в банковском деле и финансах. В этом случае они помогут прогнозировать успехи в бизнесе, оценивать долговые риски, вероятность одобрения кредита или ипотеки и даже обнаруживать мошенничество.

Например, сервисы маркетплейса Sravni.ru помогают найти самые выгодные предложения на финансовом рынке, просчитать вероятность одобрения займа, проанализировать кредитную историю, оформить, рассчитать или выплатить кредит и многое другое.

4. Безопасность

Нейронные сети также используются в целях безопасности для обнаружения вредоносного ПО, спама, модерации контента, нахождения DDoS-атак и прочего.

К ним относятся известные всем антивирусные программы, например, Kaspersky Anti-Virus, а фаерволы (Comodo) проверяют весь трафик и блокируют подозрительную активность. Защищенные браузеры и поисковики тоже включены в этот список. Они предупреждают пользователя о фишинговых и опасных сайтах, предотвращают некоторые проникновения и атаки. Так, поисковик «Яндекс» для этого использует телеметрию и собирает статистику о пользователе и его действиях, которая может быть перехвачена.

5. Умная техника

Нейросети позволяют создавать умную технику и использовать Smart-технологии для облегчения множества процессов в любых сферах.

Один из ярких примеров – голосовой помощник ChatGPT. Он способен анализировать и структурировать ответ на заданный ему вопрос, при необходимости глубже разъяснять его и перемещаться между смежными темами, придумывать истории, вести диалог, рисовать, искать изображения, переводить тексты и даже писать коды и выявлять баги.

6. Логистика

Нейронные сети используются в логистике, чтобы помочь компаниям во всем: от упаковки до доставки. Их можно использовать в маршрутизации, чтобы помочь определить лучший маршрут для водителя грузовика, выявления дефектов на производственной линии, в диспетчерской, чтобы помочь с упаковкой предметов для транспортировки или балансировки сборочной линии путем назначения рабочих мест рабочим в зависимости от их набора навыков.

Ярким примером являются системы онлайн-карт или GPS-навигаторы. Так, с помощью сервиса «Яндекс.Карты» можно найти нужное место даже без точного адреса и построить до него самый быстрый и удобный маршрут.

* * *

Очевидно, что нейросети могут быть очень полезны для множества компаний практически в любой сфере. А сегодня технологии ИИ настолько глубоко проникли в нашу реальность, что зачастую мы даже не осознаем, насколько сильно они влияют на качество и эффективность бизнеса.

Читайте также:

 
Расскажите коллегам:
Комментарии
Оставлять комментарии могут только зарегистрированные пользователи
Статью прочитали
Обсуждение статей
Все комментарии
Дискуссии
Все дискуссии
HR-новости
Названы регионы с самыми высокими зарплатными предложениями

Москва оказалась лишь на четвертом месте.

Работодатели чаще стали применять контроффер для удержания сотрудников

Конкуренция за кандидатов среди работодателей становится все более ощутимой.

Каждая пятая компания проверяет кредитные истории кандидатов

Среди соискателей с подобными проверками сталкивался каждый десятый.

В 70% компаний сотрудники продолжают работать во время болезни

Только в 26% компаний сотрудники, которые берут официальный больничный, действительно не работают во время него.