Как решать креативные задачи без перебора вслепую

Генрих Альтшуллер, «Найти идею: Введение в ТРИЗ — теорию решения изобретательских задач», – М.: «Альпина Паблишер», 2014

Формула победы

Как возникают новые виды животных? В результате действия различных мутагенных факторов появляются новые признаки. В огромном большинстве случаев они бесполезны или даже вредны. И лишь изредка появляется признак, полезный для организма. Естественный отбор бракует особи с неудачными новыми признаками и способствует сохранению и распространению особей с признаками полезными.

Таков и традиционный механизм работы при решении изобретательских задач. Изобретатели, не зная законов развития технических систем, генерируют — мысленно и в металле — множество различных вариантов решения. Жизнеспособными оказываются только те «мутации», которые действуют в направлении, совпадающем с объективно существующими законами развития.

У природы нет сознания, разума: результаты мутаций не изучаются, борьба за повышение «процента удачных мутаций» не ведется. В технике есть возможность накопить опыт «мутаций», исследовать его, выявить «правила удачного мутирования», отражающие объективные законы развития. Это позволит вести «мутации» сознательно: первый же выдвинутый вариант должен быть наилучшим.

Воображение — вольно или невольно — создает определенный образ задачи. Прочитал человек условия, и сразу же вспыхивает мысленный экран с высвеченной на нем картинкой.

Мышление несистемно. Не успели люди в процессе эволюции выработать системное видение мира. Если в задаче сказано «дерево», человек видит именно дерево.

Начинается перебор вариантов. Дерево становится чуть больше, чуть меньше... Часто на этом все кончается: ответ не найден, задача признана неразрешимой.

Это — обычное мышление. Талантливое воображение одновременно зажигает три экрана: видны надсистема (группа деревьев), система (дерево), подсистема (лист).

***

Конечно, это минимальная схема. Иногда включаются и другие экраны: наднадсистема (лес) и подподсистема (клетка листа). А главное — все это видно в развитии, потому что работают боковые экраны, показывающие прошлое и будущее на каждом уровне. Девять (минимум девять!) экранов системно и динамично отражают системный и динамичный мир.

Задача 4.1. В Народной Республике Бангладеш, как утверждает статистика, 13 млн финиковых пальм. За сезон каждая пальма может дать 240 литров сладкого сока, идущего на изготовление пальмового сахара. Но для сбора сока надо сделать надрез на стволе под самой кроной. А это 20 метров высоты!.. Как быть?

Задачу предложили фирме, выпускающей сельскохозяйственные машины и механизмы. Специалисты попробовали «альпинистский способ» — человек поднимается, вырубая ступеньки на стволе. Способ оказался непригодным: много ступенек — дерево погибает, мало ступенек — трудно подниматься. Начали проектировать нечто вроде пожарной машины с раздвижной лестницей. Каково же было удивление проектировщиков, когда они узнали, что бангладешские крестьяне обладают секретом, позволяющим легко подниматься на пальму без всяких машин...

Задача 4.1 не решается, если включен только экран 1. Но стоит совместно рассмотреть экраны 1 и 4, как решение становится очевидным. На экране №4 — маленькая пальма. Сока она еще не дает, но на ней легко можно сделать зарубку — будущую ступеньку. От одной-двух зарубок дерево не погибнет. На следующий год — еще несколько зарубок. И к тому времени, когда дерево вырастет и будет способно давать сок, на стволе окажется готовая лестница.

Другое решение просматривается при включении экрана №2. К одному дереву надо приставлять лестницу. Но если рядом растут два дерева, их стволы — почти готовая лестница, не хватает только веревочных перекладин.

Еще раз подчеркну: это не самый сложный случай — девять экранов. Гениальное мышление заставляет работать много больше экранов: вверх и вниз по иерархии систем, левее экрана №4 (вглубь прошлого) и правее экрана №7 (вглубь будущего). Сложно устроены и сами экраны. Во-первых, они двойные: на каждом экране одновременно изображение и антиизображение (объект и антиобъект). Во-вторых, меняются размеры изображений — то резко увеличиваются, то столь же резко уменьшаются...

Мир устроен непросто, и чтобы его правильно видеть и правильно понимать, нужны непростые мысленные экраны. Даже у гениев полная многоэкранная схема мышления проявляется в редкие звездные мгновения. Да и то многое остается незадействованным... Цель ТРИЗ: опираясь на изучение объективных закономерностей развития технических систем, дать правила организации мышления по многоэкранной схеме.

***

Возникает вопрос: не является ли переход от жесткой схемы к гибкой закономерностью, распространяющейся на все технические системы?

Историко-технические исследования и анализ патентного фонда дают положительный ответ на этот вопрос. «Молодые» технические системы чаще всего имеют жесткие связи между частями, не позволяющие системе приспосабливаться к меняющимся внешним условиям. Поэтому для каждой системы неизбежен этап «динамизации» — переход от жесткой, неменяющейся структуры к структуре гибкой, поддающейся управляемому изменению.

Общеизвестными примерами действия этого закона могут служить применение убирающегося шасси на самолете, самолеты с изменяющейся геометрией крыла (Ту-144 с откидывающимся «носом») и т.д. «Зрелые» и «пожилые» системы тоже динамизируются, что компенсирует увеличение их размеров. Вот а. с. 893124: «Морское судно, имеющее подводные погружные торпедообразные корпуса, соединенные с надводным корпусом вертикальными обтекаемыми стойками, отличающееся тем, что, с целью уменьшения осадки судна при швартовке у берега, крепление вертикальных стоек к надводному корпусу выполнено подвижным по высоте».

Вводят шарниры и упругие элементы, применяют пневмо- и гидроконструкции, используют вибрацию, фазовые переходы.

Выбор способа динамизации зависит от конкретных обстоятельств, но сама динамизация — универсальный закон, определяющий направление развития всех технических систем, даже их, которые по самой своей природе, казалось бы, должны зваться жесткими.

Закон увеличения степени динамичности отражает лишь одну сторону эволюции технических систем. Естественно предположить существование и других законов.

В сущности, речь идет о том, чтобы признать, что техника материальна, а ее развитие диалектично. Материальность технических систем очевидна, и столь же очевиден факт их развития, подчиняющегося, как и всякое развитие, всеобщим законам диалектики. Отсюда со всей непреложностью вытекает решающий для методологии изобретательства вывод: существуют объективные законы развития технических систем, эти законы можно познать и использовать для сознательного решения изобретательских задач без слепого перебора вариантов.

***

Если ход «техноэволюции» определяется не одним законом, а комплексом законов, научная методика решения задач тоже должна быть комплексной, многоходовой: «Проверим, соблюдается ли первый закон... Так, здесь все в порядке. А второй?.. Тоже не нарушен, хорошо! Но вот третий закон — тут явное отклонение... Систему надо изменить!»

Существование в «техноэволюции» комплекса законов особенно сердит оппонентов ТРИЗ. Логика тут такая: много законов — много шагов при решении задачи, а это трудно... Вот, например, что говорит Р. Повилейко: «Многие, наверное, слышали о различных методиках технического творчества. Книг по этой проблеме много. Толстых, с большим количеством схем, формул, условных обозначений. Берешь в руки такую книгу и вспоминаешь древнегреческий философский диалог. Сороконожку спросили: «Почему у нее 29-я нога движется после 28-й?» Она задумалась и остановилась. В некоторых методиках столько шагов, что, освоив даже два-три из них, перестаешь думать о цели, теряешь ее».

Смысл притчи о сороконожке прост: не надо мудрствовать лукаво, лучший метод — это вообще обходиться без методов.

Что ж, с этим трудно спорить, если речь идет о сороконожке. Пожалуй, сороконожке действительно следует ходить без особой методики. Но человек может и должен осмысливать все виды своей деятельности.

***

Итак, в основе ТРИЗ — представление о закономерном развитии технических систем. Материалом для выявления конкретных закономерностей является патентный фонд, содержащий описания миллионов изобретений. Ни в одном другом виде человеческой деятельности нет такого огромного и систематизированного свода записей «задача — ответ».

Анализ патентных материалов позволил выявить ряд важнейших законов развития технических систем. Первая группа этих законов («статика») относится к критериям жизнеспособности новых технических систем.

Необходимыми условиями принципиальной жизнеспособности технической (как и биологической!) системы являются:

1. наличие и хотя бы минимальная работоспособность ее основных частей;

2. сквозной проход энергии через систему к ее рабочему органу;

3. согласование собственных частот колебаний (или периодичности действия) всех частей системы.

***

Вторая группа законов развития технических систем («кинематика») характеризует направление развития независимо от конкретных технических и физических механизмов этого развития.

Все технические системы развиваются:

1) в направлении увеличения степени идеальности;

2) увеличения степени динамичности;

3) неравномерно — через возникновение и преодоление технических противоречий, причем, чем сложнее система, тем неравномернее и противоречивее развитие ее частей;

4) до определенного предела, за которым система включается в надсистему в качестве одной из ее частей; при этом развитие на уровне системы резко замедляется или совсем прекращается, заменяясь развитием на уровне надсистемы.

Существование технической системы — не самоцель. Система нужна только для выполнения какой-то функции (или нескольких функций). Система идеальна, если ее нет, а функция осуществляется. Конструктор подходит к задаче так: «Нужно осуществить то-то и то-то, следовательно, понадобятся такие-то механизмы и устройства». Правильный изобретательский подход выглядит совершенно иначе: «Нужно осуществить то-то и то-то, не вводя в систему новые механизмы и устройства».

Закон увеличения степени идеальности системы универсален. Зная этот закон, можно преобразовать любую задачу и сформулировать идеальный вариант решения. Конечно, далеко не всегда этот идеальный вариант оказывается полностью осуществимым. Иногда приходится несколько отступить от идеала. Важно, однако, другое: представление об идеальном варианте, вырабатываемое по четким правилам, и сознательные мыслительные операции «по законам» дают то, для чего раньше требовались мучительно долгий перебор вариантов, счастливая случайность, догадки и озарения.

***

А теперь вернемся к вопросу о красоте задач. Уточним: красивы не столько сами задачи, сколько сочетания «задача — логика решения — ответ». Красоты тем больше, чем неприступнее задача, изящнее логика ее решения, идеальнее ответ.

Вспомните задачу 4.5 — о копченой рыбе. Уверен, что эта задача не вызвала у вас восторга: скорее всего, она не по вашей специальности, да и вообще проблема сохранения копченой рыбы — где-то в стороне от романтики. К тому же вряд ли Вы знаете, с какой стороны подступиться к этой задаче...

Между тем задача 4.5 — просто-напросто двойник задачи 1.1. Или, если хотите, зеркальное ее отображение... В задаче 1.1 надо помешать горячему веществу (жидкий шлак) «общаться» с веществом холодным (воздух).

В задаче 4.5 требуется помешать холодному веществу (замороженная копченая рыба) «общаться» с теплым воздухом. В первом случае ввели прослойку застывшей пены; почему бы не использовать этот прием вторично?.. Застывшую пену в первом случае сделали из имеющихся под рукой веществ — жидкого шлака и газа (пара). Почему бы не поступить так и во второй раз?.. Ответ: после замораживания рыбу обволакивают застывшей пеной, приготовленной из коптильной жидкости и инертного газа, например азота.

***

Мы познакомились с двумя исключительно важными понятиями:

1. При решении задачи следует ориентироваться на идеальный ответ. Такой ответ не всегда достижим в полной мере, но необходимо добиваться максимального приближения к нему. Составленную по определенным правилам формулировку идеального ответа называют идеальным конечным результатом (ИКР).

1. Для приближения к ИКР необходимо максимально использовать имеющиеся ресурсы — вещественные и энергетические. Данные по условиям задачи вещества и поля, а также «даровые» вещества и поля принято называть вещественно-полевыми ресурсами (ВПР).

Максимальное использование ВПР для максимального продвижения к ИКР — такова в самом общем виде формула победы над задачей.

***

Уточним некоторые понятия, относящиеся к противоречиям.

Существуют противоречия административные (АП): нужно что-то сделать, а как сделать — неизвестно. Такие противоречия констатируют лишь сам факт возникновения изобретательской задачи, точнее — изобретательской ситуации. Они автоматически даются вместе с ситуацией, но ни в какой мере не способствуют продвижению к ответу.

Технические противоречия (ТП) отражают конфликт между частями или свойствами системы (или «межранговый» конфликт системы с надсистемой, системы с подсистемой).

Изобретательской ситуации присуща группа ТП, поэтому выбор одного противоречия из этой группы равносилен переходу от ситуации к задаче. Существуют типовые ТП, например, в самых различных отраслях техники часто встречаются ТП типа «вес — прочность», «точность — производительность» и т.д. Типовые технические противоречия преодолеваются типовыми же приемами. Путем анализа многих тысяч изобретений (преимущественно третьего-четвертого уровней) удалось составить списки приемов. Более того, были составлены таблицы применения этих приемов в зависимости от типа противоречий. ТП обладают определенной «подсказывательной» (эвристической) ценностью: зная ТП, можно по таблице выйти на нужную группу приемов. Однако при решении сложных задач такой путь не всегда оказывается эффективным, поскольку многое остается неопределенным: неизвестно, какой именно прием из группы надо использовать, к какой части конфликтующей пары относится этот прием, как именно его применить в конкретных обстоятельствах данной задачи.

Положение осложняется еще и тем, что решения многих сложных задач связаны с использованием определенных сочетаний нескольких приемов (или сочетаний приемов и физэффектов). Поэтому задачи необходимо анализировать глубже, выявляя физическую суть ТП.

Современная ТРИЗ предусматривает анализ причин ТП и переход от технического к физическому противоречию (ФП).

Техническое противоречие (ТП) представляет собой конфликт двух частей системы; для перехода к ФП необходимо выделить одну часть, а в этой части — одну зону, к физическому состоянию которой предъявляются взаимопротиворечивые требования. Формулируется ФП так: «Данная зона должна обладать свойством А (например, быть подвижной), чтобы выполнять такую-то функцию, и свойством не-А (например, быть неподвижной), чтобы удовлетворять требованиям задачи».

«Физичность» ФП, четкая локализация и предельная обостренность самого конфликта (быть А и не быть А) придают ФП высокую «подсказывательную» ценность. Если ФП сформулировано правильно, задачу — даже сложную — можно считать в значительной мере решенной. Дальнейшее продвижение не вызывает принципиальных трудностей (хотя и требует обширного и сконцентрированного информационного аппарата, например указателя физических эффектов и явлений).

Задача 4.7.

Имеется установка для испытания длительного действия кислот на поверхность образцов сплавов. Установка представляет собой герметично закрываемую металлическую камеру. На дно камеры устанавливают образцы (кубики). Камеру заполняют агрессивной жидкостью, создают необходимые температуру и давление. Агрессивная жидкость действует не только на кубики, но и на стенки камеры, вызывая их коррозию и быстрое разрушение. Приходится изготавливать камеру из благородных металлов, что чрезвычайно дорого. Как быть?

Перед нами изобретательская ситуация с четко видимым административным противоречием: нужно как-то снизить стоимость системы, а как именно — неизвестно. В системе три части: камера (т.е. корпус камеры, стенки), жидкость и кубик (достаточно рассмотреть один). Соответственно имеются три их комбинации: 1) камера — жидкость, 2) камера — кубик, 3) жидкость — кубик. Конфликтующими являются только первая и третья пары.

Нетрудно заметить: для возникновения конфликта нужно взаимодействие частей пары; между камерой и образцом нет конфликта, поскольку нет взаимодействия. Две конфликтующие пары — это разные изобретательские задачи со своими техническими противоречиями. Какую из них выбрать?

По задаче 4.7 за 1973-1982 гг. накопилась обширная статистика (см. таблицу).

Слушатели

Выбор конфликтующих пар

Ответы

прав.

сомнит.

неправ.

Незнакомые с ТРИЗ — 850 чел.

Камера — жидкость 628

4

121

503

Кубик — жидкость 222

163

39

20

Знакомые с основами ТРИЗ 388 чел.

Камера — жидкость 64


21

43

Кубик — жидкость 324

303

16

5

Слушатели, незнакомые с ТРИЗ, в 75% случаев выбирают в качестве конфликтующей пары «камеру — жидкость», т.е. ситуация переводится в задачу по борьбе с коррозией. Это крайне невыгодная стратегия: локальная задача по улучшению способа испытаний образцов заменяется несоизмеримо более общей и трудной задачей по защите металла от коррозии. В результате — 80% заведомо неверных решений и почти 20% весьма сомнительных и ненадежных (например, различные защитные покрытия камеры).

Слушатели, знающие основы ТРИЗ, в 83% случаев выбирают пару «кубик — жидкость», что почти всегда приводит к правильному ответу. (Следует отметить, что неверные ответы возникают — при решении этой задачи по ТРИЗ — только из-за грубого нарушения правил: человек знает правила, но ему кажется, что в данном случае они «ведут не туда»; из-за психологической инерции решение по ТРИЗ подменяется перебором вариантов.)

Задача 4.7 проста, ее можно решить перебором вариантов (хотя реально ее впервые решили по ТРИЗ, а до этого применяли дорогостоящую облицовку, считая это неизбежным). Перебрав достаточно много вариантов, можно перейти от идеи защиты стенок к идее вообще обойтись без них. Это равносильно переходу к паре «кубик — жидкость». Правила выбора пары, основанные на законах развития технических систем, делают то же самое, но без «пустых» проб. Общее правило, вытекающее из закона повышения степени идеальности, гласит: в пару должны входить изделие и та часть инструмента, с помощью которой непосредственно ведется обработка изделия.

Смысл правила: инструмент тем идеальнее, чем его меньше (при сохранении эффективности), поэтому надо рассматривать только изделие и рабочую часть инструмента, как будто всего остального вообще нет. Тем самым мы от задачи переходим к ее модели. В данном случае модель выглядит так: кубик и вокруг него агрессивная жидкость. Реально этого не может быть — жидкость прольется. Модель задачи — это мысленная, условная схема задачи, отражающая структуру конфликтного участка системы.

Переход от задачи к модели задачи облегчает выявление физического противоречия. При этом следует использовать правило: менять предпочтительно не изделие, а входящую в модель часть рабочего органа системы (изменение изделия может вызвать острые противоречия в нескольких этажах иерархии систем). Инструмент в задаче — жидкость. Эта жидкость должна окружать кубик, чтобы шли испытания, и не должна окружать кубик, чтобы не растекаться. Такая формулировка отсекает все варианты, кроме двух:

1) жидкость заменена вязким веществом типа пластилина;

2) жидкость удерживается самим кубиком (для чего он должен быть сделан полым). Предпочтительнее последний вариант: он не связан с изменением свойств жидкости.

***

Нам иногда говорят: вы учите решать задачи по законам, следовательно, учите шаблонному мышлению... Все наоборот! Обычное мышление из-за психологической инерции идет шаблонными путями. Знание законов развития технических систем позволяет сознательно уходить от шаблонов, законы подталкивают к нетривиальным, «диким» мыслительным операциям, свойственным очень талантливым изобретателям.

Задача 4.8

В книге М. Борисова «Кратеры Бабакина» есть эпизод, связанный с проектированием станции «Луна-16». Нужно было снабдить станцию компактной и сильной электролампой для освещения лунной поверхности «под ногами» станции. Лампе предстояло выдержать большие механические перегрузки. Естественно, отобранные образцы придирчиво испытывали. И вот оказалось, что лампы не выдерживают перегрузок. Слабым местом было соединение цоколя лампы со стеклянным баллоном. Сотрудники Бабакина сбились с ног, пытаясь найти более прочные лампы... Как Вы думаете: что предложил в этой ситуации главный конструктор Георгий Николаевич Бабакин?

Эту задачу вы должны решить без всяких затруднений. Идеальный баллон — когда баллона нет, а функция его выполняется. В чем функция баллона? Держать вакуум внутри лампы. Но зачем везти вакуум на Луну, если там сколько угодно своего — притом отборнейшего — вакуума?! Бабакин предложил поставить на «Луну-16» лампу без стеклянного баллона. Такая лампа непригодна на Земле, но ведь на Земле она и не нужна...

Фото: www.altshuller.ru

Расскажите коллегам:
Эта публикация была размещена на предыдущей версии сайта и перенесена на нынешнюю версию. После переноса некоторые элементы публикации могут отражаться некорректно. Если вы заметили погрешности верстки, сообщите, пожалуйста, по адресу correct@e-xecutive.ru
Комментарии
Участники дискуссии: Ольга Гарнова, Владимир Токарев
Директор по работе с клиентами, Москва

Неплохая статья. В вычислительной математике существует большое количество методов решения задачи моделирования и оптимизации сложных многофакторных систем, здесь предлагается самый простой метод сканирования, он слишком объемен и неэффективен с точки зрения трудозатрат.
Чаще всего задачи аппроксимации используют другие методы приближения к решению. Это я говорю как кибернетик по первому образованию.
А по поводу получения новых решений. Человека туда двигает обычно острая необходимость и он,начиная изучать предмет, двигается, я тут с вами полностью согласна, в случайном направлении, просто выбирает точку старта. Тут как раз важен энергетический потенциал исследователя. Если он высок, то он сможет заглянуть в новую для него область восприятия ( сможет оказаться в измененном состоянии сознания и заглянуть в область бессознательного, где явно он найдет не стандартное решение), вопрос в том, как он сможет это расшифровать и наработать новые интерпретаторы, чтобы это решение привнести в область сознательного. Тогда это будет реально совершенно новое решение, а не моделирование ситуации на основе старых решений. Хотя для постановки и описания задачи этот этап важен, чтобы просто пришло глубокое понимание задачи.

Генеральный директор, Нижний Новгород
Ольга Гарнова пишет: Неплохая статья.
Прикольная оценка презентации последней книги Альтшуллера :)) Примерно, как если бы скромный современник Адама Смита, познакомившись с его известной книгой, сказал - Неплохо, я тоже думаю про экономику.
Ольга Гарнова пишет: он слишком объемен и неэффективен с точки зрения трудозатрат.
Насколько ВСЕМ известно, это лучший метод на сегодня в деле изобретательства (включая его модификации). Недостатки других методов разбирает в этой книге сам Альтшуллер. Что касается трудоемкости, то АРИЗ предназначен для решения задач высшего уровня (по классификации Альтшуллера, начиная с третьего уровня сложности).
Оставлять комментарии могут только зарегистрированные пользователи
Статью прочитали
Обсуждение статей
Все комментарии
Новости образования
В Екатеринбурге прошла предзащита слушателей МИРБИС

Более 80% предпринимательских проектов от участников уже находятся на стадии реализации.

В ВШБ НИУ ВШЭ завершился первый поток Акселератора проектов

Выпускниками первого потока программы стали руководители компаний «Уралхим», «Марс», «Роял Канин» и финансовой дирекции НИУ ВШЭ.

Студенты Высшей школы бизнеса ВШЭ презентовали проекты крупному бизнесу

Идеи, направленные на совершенствование уже существующих сервисов ведущих российских компаний, были высоко оценены топ-менеджерами и представителями бизнеса.

 

Лидеры «Севергрупп» завершили обучение в Высшей школе бизнеса ВШЭ

В течение шести месяцев 38 слушателей программы осваивали ключевые лидерские компетенции.

Дискуссии
5
Игорь Семенов
Скажите, используются ли при ремонте материалы и если да, то кто их покупает - вы или ваш  ИП-под...
Все дискуссии
HR-новости
Названы лучшие работодатели России по версии студентов

В этом году разрыв между компаниями-лидерами сократился.

Более трети российских компаний столкнулись с ростом оттока кадров

Россияне все чаще увольняются, проработав в компании меньше года.

«Глория Джинс» закроет швейные фабрики и уволит сотрудников в Ростовской области

Более 2 тыс. работников получили уведомления об увольнении.

LG купила стартап Bear Robotics, который производит роботов-официантов с ИИ

Он войдет в подразделение робототехники LG.